



### Joint Routing and Charging Problem of Electric Vehicles

#### Canqi YAO

#### Postdoctoral Fellow Department of Logistics and Maritime Studies The Hong Kong Polytechnic University Email: canqi.yao@polyu.edu.hk



- 1. Research Background
- 2. Electric Vehicles Routing Problem
- 3. Electric Vehicles Routing Problem with Time Flexibility
- 4. Conclusion



#### 1. Research Background

#### 2. Electric Vehicles Routing Problem

### 3. Electric Vehicles Routing Problem with Time Flexibility

#### 4. Conclusion

#### □Transportation Problem >Definition

 Design the optimal routes for a fleet of vehicles, to serve the customers.

#### Applications

 Package delivery, and taxi operation









[1] Toth, Paolo, and Daniele Vigo. Vehicle routing: problems, methods, and applications. SIAM, 2014.



Elements



#### **Electric vehicle**

- Lower emissions
- Reduced dependence on fossil resources

### **Limitations**

- Range anxiety
- Long charging time





## Description Control Contr

- ≻VRP
- ≻Objective
  - Usage cost, travel time

#### Constraint

- Vehicle flow
- Time window



#### **Literature review**

#### >Exact algorithms

- Branch and bound method (TITS'18)
- Branch, cut and price method (IJPR'22, TS22)
- Solver-based method (TSG'18, TVT'20)

#### >Approximate approaches

- Dual decomposition (TSG'18, TVT'20)
- ADMM (TSG'18, TVT'20)

#### Heuristics methods

- Variable neighborhood search (TSG'18, TVT'20)
- Genetic algorithm (TSG'18, TVT'20)
- Deep reinforcement learning method (TSG'18, TVT'20)

**High computation** 

complexity

Suboptimal,

high computation

complexity

**Subotimal** 

#### 

#### Large-sized electric vehicle routing problem

- The computation time of large-sized EVRP, is quite long!
- The online EVRP requires a computation-efficient algorithm!

## Collaborative scheduling of electric vehicle fleet and customers

- Fixed pickup time of customers reduces the efficiency of electric transportation system.
- To characterize the collaborative scheduling problem, how to formulate a suitable mathematical model?



**1. Research Background** 

#### 2. Electric Vehicles Routing Problem

## 3. Electric Vehicles Routing Problem with time flexibility

4. Conclusion



#### **Mathematical model (MIP)**

#### Constraints

Visiting constriant



Visiting time

 $t_j \ge \left(T_{ij} + g_i r_i^k + t_i\right) x_{ij}^k,$ 

SoC of EV

$$E_j^k = \sum_{i \in \mathcal{V}} (E_i^k + r_i^k - e_{ij}) x_{ij}^k,$$
  
$$0 \le E_j^k \le \overline{E}.$$

Customer cannot be visited by more than one EV

The visiting time of customers

The state of charge of EV

#### **Anthematical model (MIP)**

$$\begin{split} \min_{\substack{x_{ij}^k \in \mathbb{B}, r_i^k \in \mathbb{R} \\ i \in \mathcal{V} \\ i = b_i, \quad \forall i \in \mathcal{V}, k \in \mathcal{K}, b_{v_1} = 1, b_{v_n} = -1, b_i = 0 \\ & \sum_{j \in \mathcal{V}} \sum_{j \in \mathcal{V}} x_{ij}^k \leq 1, \quad \forall i \in \mathcal{R} \\ & t_j \geq (T_{ij} + g_i r_i^k + t_i) x_{ij}^k, \forall i \in \mathcal{V} \setminus v_n, j \in \mathcal{V} \setminus v_1, k \in \mathcal{K} \\ & E_j^k = \sum_{i \in \mathcal{V}} (E_i^k + r_i^k - e_{ij}) x_{ij}^k, \forall j \in \mathcal{V} \setminus v_1, k \in \mathcal{K}, \\ & 0 \leq E_j^k \leq \overline{E}, \forall j \in \mathcal{V} \setminus v_1, k \in \mathcal{K}. \end{split}$$

$$\begin{split} \text{Integer solution from the routing problem} \\ \text{Primal problem} \\ \text{Exact LP relaxation} \end{split}$$

#### **Anthematical model (MIP)**

$$\min_{\substack{x_{ij}^{k} \in \mathbb{B}, r_{i}^{k} \in \mathbb{R} \\ prime}} \sum_{k \in \mathcal{K}} \sum_{i \in \mathcal{V}} \sum_{j \in \mathcal{V}} \sum_{j \in \mathcal{V}} (c_{i} + \omega_{T} T_{ij}) x_{ij}^{k}$$
s.t.
$$\sum_{j \in \mathcal{V}} x_{ij}^{k} - \sum_{j \in \mathcal{V}} x_{ji}^{k} = b_{i}, \quad \forall i \in \mathcal{V}, k \in \mathcal{K}, b_{v_{1}} = 1, b_{v_{n}} = -1, b_{i} = 0$$

$$\sum_{k \in \mathcal{K}} \sum_{j \in \mathcal{V}} x_{ij}^{k} \leq 1, \quad \forall i \in \mathcal{R}$$

$$t_{j} \geq (T_{ij} + g_{i}r_{i}^{k} + t_{i})x_{ij}^{k}, \forall i \in \mathcal{V} \setminus v_{n}, j \in \mathcal{V} \setminus v_{1}, k \in \mathcal{K}$$

$$Theorem 1 (Dimension reduction)$$

$$Primal problem Primal P$$

#### Two stage method (Routing problem)

#### Elimination of bilinear terms

• Eliminating bilinear term  $r_i x_{ij}$  ( $r_i$  is replaced with  $e_{ij}$ )

#### >Exact LP relaxation

- Vehicle flow constraints. are totally unimodular, satisfying sufficient condition of exact LP relaxation
- Time constraint does not break LP relaxation exactness



$$\min_{\substack{x_{ij} \in \{0,1\}\\ k \in \mathcal{K}}} \sum_{i \in \mathcal{V}} \sum_{j \in \mathcal{V}} (c_i + \omega_T T_{ij}) x_{ij}$$
  
s.t.  $t_j \ge (T_{ij} + t_i + g_i r_i) x_{ij}, \forall i \in \mathcal{V} \setminus v_n, j \in \mathcal{V} \setminus v_1$ 

$$\begin{split} \sum_{j \in \mathcal{V}} x_{ij} &- \sum_{j \in \mathcal{V}} x_{ij} = b_i, \quad \forall i \in \mathcal{V}, \\ b_{v_1} &= 1, b_{v_n} = -1, b_i = 0 \\ \sum_{k \in \mathcal{K}} \sum_{j \in \mathcal{V}} x_{ij} \leq 1, \quad \forall i \in \mathcal{R} \end{split}$$



 $\min_{r_i \in R, i \in P_k} \omega_T \sum_{i \in P_\nu} r_i g_i + \sum_{i \in P_\nu} r_i p_i$ 

 $0 \leq E_i^k \leq \overline{E}$ 

s.t.  $E_i = \tilde{E}_i + r_i - e_{ij}, \forall j \in P_k \setminus v_1$ 

#### **Two stage method (Charging scheduling)** $\succ$ Given $x_{ij}$ , obtain the path $P_k$ for each EV

## How to get a better solution?



## Iterative two stage method



#### Performance guarantee

#### Two stage method

 Both routing and charging problem are LP problems, which reduces the computation time

#### Iterative method

 Converge in finite iterations

#### Optimality gap

 $C_{MIP} \leq C_{ILP} \leq C_{TLP}$ > Computation time

 $T_{MIP} \gg T_{ILP} \ge T_{TLP}$ 

#### **Simulation results**

### Comparison between TLP, and ILP

Large-sized problem



#### **Online routing problem**

## Real-time generated customersThe uncertain charging prices





### **Online routing problem**

Real-time generated customersThe uncertain charging prices



## Challenges: Multi-depot routing problem



#### **Multi-depot routing problem**

#### The equivalent transformation rule

- The road selection variable and travel time of virtual roads are set as 1,0, respectively.
- The energy consumption of virtual roads is set as the difference between the battery capacity and current SoC of EV.



Homogenous EV at the virtual depot

#### **Simulation results**

#### Evaluation of the simulated competitive ratio



The SCR of ILP is lower than **1.2**, demonstrating that the ILP works well in online routing problem



1. Research Background

#### 2. Electric Vehicles Routing Problem

### 3. Electric Vehicles Routing Problem with Time Flexibility

#### 4. Conclusion

#### **Time flexibility**



## Mathematical model of the fleet operator Objective function



Customer r

#### **Mathematical model of customers**

$$\min_{\substack{\delta_j \in \mathbb{R} \\ \text{s.t.}}} \quad \mathcal{I}(\delta_j) - q_j \delta_j ,$$
s.t.  $0 \le \delta_j \le \overline{\delta_j}$ 

+

Minimize the inconvenience cost + maximize the discount of delivery fee

**Fleet Operator** 

X.r.a

27

problem?

#### **The joint model of the** float and customore

#### □The equivalent reformulation method ≻KKT optimality condition



#### Linearization of nonlinear terms

$$\eta_{ijk}^{1} \geq \omega_{T} r_{i}^{k} g_{i} - M (1 - x_{ij}^{k}), \forall i \in \mathcal{V}, j \in \mathcal{V}, k \in \mathcal{K}$$
  
$$\eta_{j}^{2} \geq \mathcal{I}(\delta_{j}) + u_{j} \overline{\delta_{j}} - \phi^{*}(\delta_{j}^{*}) - M \left(1 - \sum_{k \in \mathcal{K}} \sum_{i \in \mathcal{J}} x_{ij}^{k}\right), \forall j \in \mathcal{R}.$$

Zero duality gap of the lower-level problem

Solvable single-level problem

# ❑Linearized single-level problem >MIP-based single-level Problem >Solved by commercial solver







#### **The algorithm details**



#### **Simulation results**

#### $\geq$ Impact of Different Time-flexibility Levels $\overline{\delta_i}$



The operation cost becomes **smaller** with increasing values of  $\overline{\delta_i}$ ; The delivery fee saving becomes **lager** with increasing values of  $\overline{\delta_i}$ 

[5] C. Yao, S. Chen and Z. Yang, "Cooperative Operation of the Fleet Operator and Incentive-Aware Customers in an On-Demand Delivery System: A Bi-Level Approach," in IEEE Internet of Things Journal, doi: 10.1109/JIOT.2023.3324047.

#### **Simulation results**

#### Comparison results between SGBD, GBD, BCP



SGBD shows a better performance than GBD, and BCP in terms of the number of iterations and computation time

[6] **C. Yao,** S. Chen, M. Salazar and Z. Yang, "Joint Routing and Charging Problem of Electric Vehicles With Incentive-Aware Customers Considering Spatio-Temporal Charging Prices," in IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 11, pp. 12215-12226, Nov. 2023.

#### **Simulation results**

#### The scalability of SGBD

| Instance        | $\begin{aligned}  \mathcal{V}  &= 11\\  \mathcal{E}  &= 22 \end{aligned}$ | $\begin{aligned}  \mathcal{V}  &= 51\\  \mathcal{E}  &= 102 \end{aligned}$ | $\begin{aligned}  \mathcal{V}  &= 101 \\  \mathcal{E}  &= 202 \end{aligned}$ | $\begin{aligned}  \mathcal{V}  &= 151 \\  \mathcal{E}  &= 302 \end{aligned}$ |
|-----------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Run<br>time (s) | 2.06                                                                      | 121.47                                                                     | 837.35                                                                       | *                                                                            |
| ε               | 0                                                                         | 0.41%                                                                      | 2.33%                                                                        | 12.23%                                                                       |

SGBD can solve the EVRP with up to 150 nodes and 15 EVs

## Outline

- 1. Research Background
- 2. Electric Vehicles Routing Problem
- 3. Electric Vehicles Routing Problem with Time Flexibility
- 4. Conclusion

### Conclusion

□Design the approximate method to solve large-sized EVRP in polynomial time

- □Devise the rolling horizon based method to solve the online EVRP with the near-optimal solution
- Propose a bilevel optimization model, to characterize the mathematical model of customers and the electric vehicle fleet
- Design the KKT condition based equivalent reformulation method, and the strengthened generalized Benders decomposition method





#### Acknowledgement

Advisor: Prof. Zaiyue Yang (SUSTech) Collaborators: Prof. Shibo Chen (PolyU) Prof. Mauro Salazar (TU/e)

