

Joint Routing and Charging Problem of Electric Vehicles

Canqi YAO

Postdoctoral Fellow Department of Logistics and Maritime Studies The Hong Kong Polytechnic University Email: canqi.yao@polyu.edu.hk

- **1. Research Background**
- **2. Electric Vehicles Routing Problem**
- **3. Electric Vehicles Routing Problem with Time Flexibility**
- **4. Conclusion**

1. Research Background

2. Electric Vehicles Routing Problem

3. Electric Vehicles Routing Problem with Time Flexibility

4. Conclusion

QTransportation Problem Ø**Definition**

■ Design the optimal routes for a fleet of vehicles, to serve the customers.

Ø**Applications**

■ Package delivery, and taxi operation

[1] Toth, Paolo, and Daniele Vigo. Vehicle routing: problems, methods, and applications. SIAM, 2014.

Elements

[1] Toth, Paolo, and Daniele Vigo. Vehicle routing: problems, methods, and applications. SIAM, 2014.

q**Electric vehicle**

- Ø**Lower emissions**
- Ø**Reduced dependence on fossil resources**

q**Limitations**

- Ø**Range anxiety**
- Ø**Long charging time**

QElectric vehicle routing problem (EVRP)

- Ø**VRP + charging scheduling**
- Ø**Objective**
	- § Usage cost, travel time

Ø**Constraint**

- Vehicle flow
- Time window

q**Literature review**

Ø**Exact algorithms**

- Branch and bound method (TITS'18)
- Branch, cut and price method (IJPR'22, TS22)
- Solver-based method (TSG'18, TVT'20)

Ø**Approximate approaches**

- Dual decomposition (TSG'18, TVT'20)
- § ADMM (TSG'18, TVT'20)

Ø**Heuristics methods**

- § Variable neighborhood search (TSG'18, TVT'20)
- Genetic algorithm (TSG'18, TVT'20)
- Deep reinforcement learning method (TSG'18, TVT'20)

Subotimal

High computation

complexity

Suboptimal,

high computation

complexity

QMotivation

Ø**Large-sized electric vehicle routing problem**

- The compuataion time of large-sized EVRP, is quite long!
- The online EVRP requires a computation-efficient algorithm!

Ø**Collaborative scheduling of electric vehicle fleet and customers**

- Fixed pickup time of customers reduces the efficiency of electric transportation system.
- § To characterize the collaborative scheduling problem, how to formulate a suitable mathematical model?

1. Research Background

2. Electric Vehicles Routing Problem

3. Electric Vehicles Routing Problem with time flexibility

4. Conclusion

q**Mathematical model (MIP)**

Ø**Constraints**

■ Visiting constriant

Customer cannot be visited by more than one EV

§ Visiting time

 $t_j \geq (T_{ij} + g_i r_i^k + t_i) x_{ij}^k,$

■ SoC of EV

$$
E_j^k = \sum_{i \in V} \left(E_i^k + r_i^k - e_{ij} \right) x_{ij}^k,
$$

$$
0 \le E_j^k \le \overline{E}.
$$

The visiting time of customers

The state of charge of EV

q**Mathematical model (MIP)**

$$
\min_{\substack{x_{ij}^k \in \mathbb{B}, r_i^k \in \mathbb{R} \\ s.t.}} \sum_{k \in \mathcal{K}} \sum_{l \in \mathcal{V}} \sum_{l \in \mathcal{V}} (c_i + \omega_T T_{ij} + r_i^k p_i + \omega_T r_i^k g_i) x_{ij}^k
$$
\ns.t.
$$
\sum_{j \in \mathcal{V}} x_{ij}^k - \sum_{j \in \mathcal{V}} x_{ji}^k = b_i, \quad \forall i \in \mathcal{V}, k \in \mathcal{K}, b_{v_1} = 1, b_{v_n} = -1, b_i = 0
$$
\n
$$
\sum_{k \in \mathcal{K}} \sum_{j \in \mathcal{V}} x_{ij}^k \le 1, \quad \forall i \in \mathcal{R}
$$
\n
$$
t_j \ge (T_{ij} + g_i r_i^k + t_i) x_{ij}^k, \forall i \in \mathcal{V} \setminus v_n, j \in \mathcal{V} \setminus v_1, k \in \mathcal{K}
$$
\n
$$
E_j^k = \sum_{i \in \mathcal{V}} (E_i^k + r_i^k - e_{ij}) x_{ij}^k, \forall j \in \mathcal{V} \setminus v_1, k \in \mathcal{K},
$$
\n
$$
0 \le E_j^k \le E, \forall j \in \mathcal{V} \setminus v_1, k \in \mathcal{K}.
$$
\nElimination of the routing problem **Charging Problem Example Example**

q**Mathematical model (MIP)**

$$
\min_{x_{ij}^k \in \mathbb{B}, r_i^k \in \mathbb{R}} \sum_{k \in \mathcal{K}} \sum_{i \in \mathcal{V}} \sum_{j \in \mathcal{V}} (c_i + \omega_T T_{ij}) \lambda_{ij}^k
$$
\ns.t\n
$$
\sum_{j \in \mathcal{V}} x_{ij}^k - \sum_{j \in \mathcal{V}} x_{ji}^k = b_i, \quad \forall i \in \mathcal{V}, k \in \mathcal{K}, b_{v_1} = 1, b_{v_n} = -1, b_i = 0
$$
\n
$$
\sum_{k \in \mathcal{K}} \sum_{j \in \mathcal{V}} x_{ij}^k \le 1, \quad \forall i \in \mathcal{R}
$$
\nt_j \ge (T_{ij} + g_ir_i^k + t_i)x_{ij}^k, \forall i \in \mathcal{V} \setminus v_n, j \in \mathcal{V} \setminus v_1, k \in \mathcal{K}\n
$$
\text{Theorem 1 (Dimension reduction)}
$$
\n
$$
\text{Pimal problem}
$$
\n
$$
\text{Problem}
$$
\n
$$
\text{Exact LP relaxation}
$$
\n
$$
\text{Factoring problem}
$$
\n
$$
\text{Problem}
$$
\n
$$
\text{Total image problem}
$$
\n
$$
\text{Total image problem}
$$
\n
$$
\text{Example 15}
$$

q**Two stage method (Routing problem)**

Ø**Elimination of bilinear terms**

Eliminating bilinear term $r_i x_{i,i}$ (r_i is replaced with e_{ij})

Ø**Exact LP relaxation**

- Vehicle flow constraints. are totally unimodular, satisfying sufficient condition of exact LP relaxation
- § Time constraint does not break LP relaxation exactness

IP LP

$$
\min_{x_{ij}\in\{0,1\}} \sum_{k\in\mathcal{K}} \sum_{i\in\mathcal{V}} \sum_{j\in\mathcal{V}} (c_i + \omega_T T_{ij}) x_{ij}
$$
\n
$$
\text{s.t.} \quad t_j \ge (T_{ij} + t_i + g_i r_i) x_{ij}, \forall i \in \mathcal{V} \setminus \nu_n,
$$
\n
$$
j \in \mathcal{V} \setminus \nu_1
$$

$$
\sum_{j \in \mathcal{V}} x_{ij} - \sum_{j \in \mathcal{V}} x_{ij} = b_i, \quad \forall i \in \mathcal{V},
$$

$$
b_{\nu_1} = 1, b_{\nu_n} = -1, b_i = 0
$$

$$
\sum_{k \in \mathcal{K}} \sum_{j \in \mathcal{V}} x_{ij} \le 1, \quad \forall i \in \mathcal{R}
$$

 ω_{T} $>$

 $i\overline{\in P}_k$

 $0 \leq E_j^k \leq \overline{E}$

 $r_i g_i + \sum$

s.t. $E_i = E_i + r_i - e_{ij}, \forall j \in P_k \setminus v_1$

 $i\overline{\in P}_k$

 $r_i p_i$

min r_i ∈R, i ∈P $_k$

q**Two stage method (Charging scheduling)** \triangleright Given x_{ij} , obtain the path P_k for each EV

How to get a better solution?

The charging scheduling problem is a **LP** problem

QIterative two stage method

q**Performance guarantee**

Ø**Two stage method**

■ Both routing and charging problem are LP problems, which reduces the computation time

Ø**Iterative method**

■ Converge in finite iterations

Ø**Optimality gap**

Ø**Computation time** $C_{MIP} \leq C_{ILP} \leq C_{TLP}$

 $T_{MIP} \gg T_{ILP} \geq T_{TLP}$

q**Simulation results**

Ø**Comparison between TLP, and ILP** Ø**Large-sized problem**

QOnline routing problem

Ø**Real-time generated customers** Ø**The uncertain charging prices**

QOnline routing problem

Ø**Real-time generated customers** Ø**The uncertain charging prices**

Challenges: Multi-depot routing problem

QMulti-depot routing problem

Ø**The equivalent transformation rule**

- The *road selection variable* and *travel time* of virtual roads are set as 1,0, respectively.
- The energy consumption of virtual roads is set as the difference between the battery capacity and current SoC of EV.

Homogenous EV at the virtual depot

q**Simulation results**

Ø**Evaluation of the simulated competitive ratio**

The SCR of ILP is lower than **1.2**, demonstrating that the ILP works well in online routing problem

1. Research Background

2. Electric Vehicles Routing Problem

3. Electric Vehicles Routing Problem with Time Flexibility

4. Conclusion

q**Time flexibility**

q**Mathematical model of the fleet operator** Ø**Objective function**

Customer

 $t_j^L \le t_j \le t_j^L + \delta_j$, $\forall j \in \mathcal{R}$.

Customer n

QMathematical model of customers

$$
\min_{\delta_j \in \mathbb{R}} \quad \mathcal{I}(\delta_j) - q_j \delta_j,
$$

s.t. $0 \le \delta_j \le \overline{\delta_j}$

Minimize the inconvenience cost + **maximize the discount of delivery fee**

QThe joint model of the fleet and customers

$$
\min_{X} \sum_{i \in C} \sum_{\tau \in \Lambda} \frac{p_{i\tau}B_{i\tau} \Delta \tau}{g_i} + \sum_{k \in \mathcal{K}} \sum_{i \in \mathcal{V}} \sum_{j \in \mathcal{V}} (c_i + \omega_T T_{ij} + \omega_T r_i^k g_i) x_{ij}^k
$$
\n
$$
+ \sum_{j \in \mathcal{R}} q_j \delta_j^* \sum_{i \in \mathcal{V}} \sum_{k \in \mathcal{K}} x_{ij}^k
$$
\n
$$
\text{s.t.} \quad \delta_j^* \in \arg \min_{\delta_j} \{ \mathcal{I}(\delta_j) - q_j \delta_j, 0 \le \delta_j \le \overline{\delta_j} \}, \quad \text{S.t.} \quad \delta_j^* \in \arg \min_{\delta_j} \{ \mathcal{I}(\delta_j) - q_j \delta_j, 0 \le \delta_j \le \overline{\delta_j} \}
$$

∀ ∈ ℛ, **How to solve the joint optimization problem?**

Fleet Operator

 X, r, q

27

QThe equivalent reformulation method Ø**KKT optimality condition**

Ø**Linearization of nonlinear terms**

$$
\eta_{ijk}^1 \ge \omega_T r_i^k g_i - M(1 - x_{ij}^k), \forall i \in \mathcal{V}, j \in \mathcal{V}, k \in \mathcal{K}
$$

$$
\eta_j^2 \ge J(\delta_j) + u_j \overline{\delta_j} - \phi^*(\delta_j^*) - M\left(1 - \sum_{k \in \mathcal{K}} \sum_{i \in \mathcal{J}} x_{ij}^k\right), \forall j \in \mathcal{R}.
$$

7-3

Zero duality gap of the lower-level problem

Solvable single-level

problem

q**Linearized single-level problem** Ø**MIP-based single-level Problem**

Ø**Solved by commercial solver**

QThe algorithm details

q**Simulation results**

\triangleright Impact of Different Time-flexibility Levels $\overline{\delta_j}$

The operation cost becomes smaller with increasing values of $\overline{\delta_j}$; The delivery fee saving becomes **lager** with increasing values of $\overline{\delta_j}$

[5] **C. Yao,** S. Chen and Z. Yang, "Cooperative Operation of the Fleet Operator and Incentive-Aware Customers in an On-Demand Delivery System: A Bi-Level Approach," in IEEE Internet of Things Journal, doi: 10.1109/JIOT.2023.3324047.

q**Simulation results**

Ø**Comparison results between SGBD, GBD, BCP**

SGBD shows a better performance than GBD, and BCP in terms of the number of iterations and computation time

32 [6] **C. Yao,** S. Chen, M. Salazar and Z. Yang, "Joint Routing and Charging Problem of Electric Vehicles With Incentive-Aware Customers Considering Spatio-Temporal Charging Prices," in IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 11, pp. 12215-12226, Nov. 2023.

q**Simulation results**

Ø**The scalability of SGBD**

SGBD can solve the EVRP with up to 150 nodes and 15 EVs

- **1. Research Background**
- **2. Electric Vehicles Routing Problem**
- **3. Electric Vehicles Routing Problem with Time Flexibility**
- **4. Conclusion**

Conclusion

q**Design the approximate method to solve large-sized EVRP in polynomial time**

- q**Devise the rolling horizon based method to solve the online EVRP with the near-optimal solution**
- q**Propose a bilevel optimization model, to characterize the mathematical model of customers and the electric vehicle fleet**
- q**Design the KKT condition based equivalent reformulation method, and the strengthened generalized Benders decomposition method**

Acknowledgement

Collaborators: Prof. Shibo Chen (PolyU) **Prof. Zaiyue Yang (SUSTech) Advisor:** Prof. Mauro Salazar (TU/e)

